MICROWAVE SYNTHESIS OF B4C–Al2O3 COMPOSITE IN A MECHANICALLY ACTIVATED Al/B2O3/C POWDER MIXTURE
نویسندگان
چکیده مقاله:
B4C–Al2O3 composite powder was produced by aluminothermic reduction in Al/B2O3/C system. In this research, microwave heating technique was used to synthesize desired composite. The ball milling of powder mixtures was performed in order to study the effect of mechanical activation on the synthesis process. The synthesis mechanism in this system was investigated by examining the corresponding binary sub-reactions. The self-sustaining reduction of boron oxide by Al was recognized to be the triggering step in overall reaction.
منابع مشابه
Mechanically Activated Combustion Synthesis of B4C-TiB2 Nanocomposite Powder
Boron carbide is one of the hardest materials. The combustion method was used to synthesize B4C-TiB2 nanocomposite powder in a B2O3-Mg-TiO2-C system. An experimental study of the formation of B4C–TiB2 nanoparticles was conducted in the thermal explosion mode. A mixture of B2O3:TiO2:Mg:C at a molecular ratio of 3:1:12:1 was chosen to obtain the B4C–TiB2. This powder mixture was milled for differ...
متن کاملmechanically activated combustion synthesis of b4c-tib2 nanocomposite powder
boron carbide is one of the hardest materials. the combustion method was used to synthesize b4c-tib2 nanocomposite powder in a b2o3-mg-tio2-c system. an experimental study of the formation of b4c–tib2 nanoparticles was conducted in the thermal explosion mode. a mixture of b2o3:tio2:mg:c at a molecular ratio of 3:1:12:1 was chosen to obtain the b4c–tib2. this powder mixture was milled for differ...
متن کاملبررسی اثر حضور آلومینیوم اضافی در مخلوط پودری TiO2-Al و نوع ماده جاذب در ساخت ریزموجی کامپوزیت TiAl/Al2O3
In this research, TiAl/Al2O3 composite was synthesized from mechanically activated TiO2-Al powder mixtures using microwave heating.The initial powder mixtures were mechanically activated and pressed into cylindrical tablets and then heated in a microwave oven. The effect of different amounts of excess Al and microwave susceptor material (SiC or graphite) on the ignition time and the result...
متن کاملPREPARATION OF NANO-STRUCTURAL Al2O3-TiB2 IN-SITU COMPOSITE USING MECHANICALLY ACTIVATED COMBUSTION SYNTHESIS FOLLOWED BYINTENSIVE MILLING
Abstract: Nano-structural synthesized materials can be fabricated utilizing intensive milling after combustion synthesis. The Al2O3-TiB2 ceramic composite has been synthesized by aluminothermic reactions between Al, Ti (TiO2), and B (B2O3 or H3BO3). Boric acid (H3BO3) is less expensive than boron oxide, and after being dehydrated at 200°C, boron oxide will be obtained. In this study, Al, TiO2, ...
متن کاملTHE EFFECT OF MILLING CONDITIONS ON THE MECHANICAL ALLOYING AND COMBUSTION SYNTHESIS OF TIO2-AI-C POWDER MIXTURE
A mixture of Tio2+Al+C powders was mechanically activated using a planetary ball mill under different milling conditions wherein the milled powders were further subjected to combustion synthesis to produce TiC+Al2O3 composite. The mechanically alloyed powders were characterized by X-Ray diffraction analysis and TEM investigations. XRD analysis of milled powder mixture showed no significant reac...
متن کاملIN SITU FABRICATION OF Al 2024-Mg2Si COMPOSITE BY SPARK PLASMA SINTERING OF REACTIVE MECHANICALLY ALLOYED POWDER
In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electro...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره 4
صفحات 89- 99
تاریخ انتشار 2015-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023